Mortgage Loan Origination Software – 10 Functions of Mortgage Banking

Regardless of a mortgage lending organizations’ size, mortgage loan software, data security solutions and automation tools and services should be able to assist with mortgage loan automation requirements. In today’s chaotic mortgage lending environment origination and document security systems need to be easily configured to emphasize a company’s special needs and increase efficiencies across all aspects of the loan origination process, allowing lenders to increase quality and productivity.

Technology-driven automation is the key to succeeding in the increasingly complex, deeply scrutinized mortgage industry. Web-based (Software-as-a-Service), Enterprise mortgage software that supports the ten primary functions in mortgage banking will provide lenders with the necessary competitive advantages to succeed in today’s mortgage industry.

Ten Primary Functions in Mortgage Banking

  1. Mortgage Web site design, implementation, and hosting to provide product, service, loan status, and company information to mortgage customers and business partners
  2. Online loan applications for gathering information from borrowers and business partners that issue loan terms, disclosures, and underwriting conditions
  3. Loan origination software for managing loan data, borrower data, property data, general status reporting, and calculations
  4. Interface systems to send and receive data from real estate service providers, such as credit reports, flood determinations, automated underwriting, fraud detection, and closing documents
  5. Internal automated underwriting system that is simple enough for originators and sophisticated enough for underwriting portfolio loan products
  6. Document generation for applications, upfront disclosures, business processes, and closing documents
  7. Integrated imaging that is used from loan origination to investor delivery and for file archiving
  8. Interest rate and fee generation along with program qualification guidelines
  9. Secondary marketing data tools to track loan revenue and investor relationships, including warehouse line management and interim servicing to complete the back-office system
  10. Reporting such as loan delivery, year-end fee reporting, and HMDA reporting for loan application disposition

Web-Based, enterprise mortgage software that supports the ten primary functions of mortgage banking simplifies compliance, maximizes operational efficiencies, and increases profitability.

Posted in general | Comments Off on Mortgage Loan Origination Software – 10 Functions of Mortgage Banking

What Requirements Does a Dot Net Developer Need to Fulfill?

Microsoft Dot Net is a useful software development component. It provides tools and libraries to the software developers so that they can create Windows-based applications in a more efficient manner. A Dot Net developer is a software programmer who has specific skills using .Net to develop software and computer applications. For people who are in the midst of looking for developers for your projects, there are some areas you need to take note. You are advised to look for competent programmers who can really assist you to complete your tasks successfully.

First thing first, you need to be clear about the responsibilities of a .Net Developer before you start looking for suitable candidate. Seriously speaking, the programmer is required to:

• Work hand in hand with other software engineers and architects to develop a logical series of instructions referred to as programming code for the computer to communicate with the networks, applications and databases.

• Create new software applications to suit the business needs

• Modify, repair, test and enhance existing applications

After knowing what the developer is required to do, the next area we need to take into consideration is the academic qualification. In general, a programmer should have degree qualification in computer science, information technology or any related discipline. If the programmer is not a degree holder, you may take a look at his or her working experience. If the candidate has extensive experience dealing with .Net development tools, you can consider getting him or her in. Check with the candidate whether he or she is familiar with maintenance of ASP Applications, e-Commerce solution, online education and learning, social networking sites, corporate web applications, and so on.

At the same time, a good dot net developer must be competent in carrying out all the important tasks. It is a must for him or her to have the following skills in:

• Classic ASP

• Microsoft SQL 2000 / 2005

• MS Access

• JavaScript, XML, DHTML, AJAX and CSS

• VBScript and JScript

Frankly speaking, if the programmer does not have the above mentioned skills, most of the employers in the job market are not willing to hire him or her.

Besides the skills, we should also take serious consideration on the general qualities of the programmers. They should have qualities as follow:

• Good passion in work

Having great interest in work is important. The programmers should love and enjoy what they are doing.

• Good learning attitude

Learning is a continuous process. We can’t stop at certain stage. Good developers must have positive attitude in learning. They must always grab the opportunities to learn new technology so that good applications can be adapted.

• Some “intelligence”

Honestly speaking, intelligence is something very subjective. What I mean here is the “personality” of the person. Being a programmer, he or she must be smart and sensitive to respond to all changes. It is important for a programmer to be open-minded and willing to take new challenges from time to time.

Posted in general | Comments Off on What Requirements Does a Dot Net Developer Need to Fulfill?

Why Do We Need Software Engineering?

To understand the necessity for software engineering, we must pause briefly to look back at the recent history of computing. This history will help us to understand the problems that started to become obvious in the late sixties and early seventies, and the solutions that have led to the creation of the field of software engineering. These problems were referred to by some as “The software Crisis,” so named for the symptoms of the problem. The situation might also been called “The Complexity Barrier,” so named for the primary cause of the problems. Some refer to the software crisis in the past tense. The crisis is far from over, but thanks to the development of many new techniques that are now included under the title of software engineering, we have made and are continuing to make progress.

In the early days of computing the primary concern was with building or acquiring the hardware. Software was almost expected to take care of itself. The consensus held that “hardware” is “hard” to change, while “software” is “soft,” or easy to change. According, most people in the industry carefully planned hardware development but gave considerably less forethought to the software. If the software didn’t work, they believed, it would be easy enough to change it until it did work. In that case, why make the effort to plan?

The cost of software amounted to such a small fraction of the cost of the hardware that no one considered it very important to manage its development. Everyone, however, saw the importance of producing programs that were efficient and ran fast because this saved time on the expensive hardware. People time was assumed to save machine time. Making the people process efficient received little priority.

This approach proved satisfactory in the early days of computing, when the software was simple. However, as computing matured, programs became more complex and projects grew larger whereas programs had since been routinely specified, written, operated, and maintained all by the same person, programs began to be developed by teams of programmers to meet someone else’s expectations.

Individual effort gave way to team effort. Communication and coordination which once went on within the head of one person had to occur between the heads of many persons, making the whole process very much more complicated. As a result, communication, management, planning and documentation became critical.

Consider this analogy: a carpenter might work alone to build a simple house for himself or herself without more than a general concept of a plan. He or she could work things out or make adjustments as the work progressed. That’s how early programs were written. But if the home is more elaborate, or if it is built for someone else, the carpenter has to plan more carefully how the house is to be built. Plans need to be reviewed with the future owner before construction starts. And if the house is to be built by many carpenters, the whole project certainly has to be planned before work starts so that as one carpenter builds one part of the house, another is not building the other side of a different house. Scheduling becomes a key element so that cement contractors pour the basement walls before the carpenters start the framing. As the house becomes more complex and more people’s work has to be coordinated, blueprints and management plans are required.

As programs became more complex, the early methods used to make blueprints (flowcharts) were no longer satisfactory to represent this greater complexity. And thus it became difficult for one person who needed a program written to convey to another person, the programmer, just what was wanted, or for programmers to convey to each other what they were doing. In fact, without better methods of representation it became difficult for even one programmer to keep track of what he or she is doing.

The times required to write programs and their costs began to exceed to all estimates. It was not unusual for systems to cost more than twice what had been estimated and to take weeks, months or years longer than expected to complete. The systems turned over to the client frequently did not work correctly because the money or time had run out before the programs could be made to work as originally intended. Or the program was so complex that every attempt to fix a problem produced more problems than it fixed. As clients finally saw what they were getting, they often changed their minds about what they wanted. At least one very large military software systems project costing several hundred million dollars was abandoned because it could never be made to work properly.

The quality of programs also became a big concern. As computers and their programs were used for more vital tasks, like monitoring life support equipment, program quality took on new meaning. Since we had increased our dependency on computers and in many cases could no longer get along without them, we discovered how important it is that they work correctly.

Making a change within a complex program turned out to be very expensive. Often even to get the program to do something slightly different was so hard that it was easier to throw out the old program and start over. This, of course, was costly. Part of the evolution in the software engineering approach was learning to develop systems that are built well enough the first time so that simple changes can be made easily.

At the same time, hardware was growing ever less expensive. Tubes were replaced by transistors and transistors were replaced by integrated circuits until micro computers costing less than three thousand dollars have become several million dollars. As an indication of how fast change was occurring, the cost of a given amount of computing decreases by one half every two years. Given this realignment, the times and costs to develop the software were no longer so small, compared to the hardware, that they could be ignored.

As the cost of hardware plummeted, software continued to be written by humans, whose wages were rising. The savings from productivity improvements in software development from the use of assemblers, compilers, and data base management systems did not proceed as rapidly as the savings in hardware costs. Indeed, today software costs not only can no longer be ignored, they have become larger than the hardware costs. Some current developments, such as nonprocedural (fourth generation) languages and the use of artificial intelligence (fifth generation), show promise of increasing software development productivity, but we are only beginning to see their potential.

Another problem was that in the past programs were often before it was fully understood what the program needed to do. Once the program had been written, the client began to express dissatisfaction. And if the client is dissatisfied, ultimately the producer, too, was unhappy. As time went by software developers learned to lay out with paper and pencil exactly what they intended to do before starting. Then they could review the plans with the client to see if they met the client’s expectations. It is simpler and less expensive to make changes to this paper-and-pencil version than to make them after the system has been built. Using good planning makes it less likely that changes will have to be made once the program is finished.

Unfortunately, until several years ago no good method of representation existed to describe satisfactorily systems as complex as those that are being developed today. The only good representation of what the product will look like was the finished product itself. Developers could not show clients what they were planning. And clients could not see whether what the software was what they wanted until it was finally built. Then it was too expensive to change.

Again, consider the analogy of building construction. An architect can draw a floor plan. The client can usually gain some understanding of what the architect has planned and give feed back as to whether it is appropriate. Floor plans are reasonably easy for the layperson to understand because most people are familiar with the drawings representing geometrical objects. The architect and the client share common concepts about space and geometry. But the software engineer must represent for the client a system involving logic and information processing. Since they do not already have a language of common concepts, the software engineer must teach a new language to the client before they can communicate.

Moreover, it is important that this language be simple so it can be learned quickly.

Posted in general | Comments Off on Why Do We Need Software Engineering?

Turn Your Basement Into a Virtual Shooting Gallery

An indoor shooting simulator is easy to add on to most projection based home theater systems, and in most cases is an inexpensive way to add hours of entertainment for the whole family. People of all ages enjoy playing the wide range of games that are available for the system, everything from “Baseball Challenge” to “Elephant Hunter” will keep your family and friends entertained. Utilizing a shooting simulator is not only a great way to add excitement to your home theater room; it is also a get way to keep your shooting skills sharp.

System Basics:

There are a few basic requirements for adding a shooting simulator to an existing home theater. The simulator runs on a normal Windows based computer, software is compatible with Windows XP, Windows Vista and Windows 7. The image is broadcast through a projector to a screen, which most projectors and home theater screens will be suitable for use with this simulator. Now all you need to add is a basic simulator package, which includes a rifle, case, camera and five games. Installation of the simulator will only take about thirty minutes to setup and install the new software and hardware. Now you are ready to start enjoying the very best of simulated shooting. To recap the items you need: computer, projector, screen and a simulator package.

Benefits of Indoor Shooting:

There are many advantages to adding an indoor shooting simulator to you home theater room, these are just a few.

Convenience- having the ability to practice your shooting skills from within your own house, cuts down on drive time to the range and you can fire up your system anytime you want.

Cost Savings- ammunition is expensive! You will save a lot of money practicing your skills using a true to life replica laser firearm verses using live ammo.

Safety- using a laser firearm is a much safer weapon to practice will and it’s a lot better for your hearing.

Shooting Variety- with a shooting simulator you have the ability to practice your skills on a wide range of software titles. You can practice shooting skeet and with just a touch of a button you can switch over to another game and practice your marksmanship on simulated popup targets.

Entertainment- Gather you friends and family, challenge them for the highest score or for bragging rights.

Packages and Software:

With this system, there are many packages of both hardware and software available. Looking for a portable package or maybe a complete package if you don’t have a projector, computer and screen? Those packages and more are available. There are over 35 software titles currently available, which can be purchased separately or in 15 game packages. Software titles are being added, so you will always have the option to buy the latest games on the market. Do you have the best Halloween party on your block? There is a Halloween software package that will insure your party is unforgettable. Do you have a young hunter or marksman that could benefit from “Hunter’s Education” software? It is an option on this simulator. Teach them everything from ethical shooting to animal anatomy, with the hunter’s Ed package. Looking to hone your archery skills? This simulator has packages available for you bow enthusiasts. There are several optional firearms which can be added to the system, to maximize the skill development and enjoyment of the simulator.

Adding a shooting simulator to your theater room is easy and a cost effective way of increasing the entertainment value of your room as well as improve shooting skills. If you would like some more information on the shooting simulators or have any questions please contact me through the website.

Posted in general | Comments Off on Turn Your Basement Into a Virtual Shooting Gallery

Introduction to Fixed Asset Management

There are obvious benefits from implementing and maintaining a record and control over assets. Savings can be obtained from being able to both see current asset deployment and thenby maximizing their use. Monitoring assets will reduce unauthorized use or misappropriation and insure employees leaving a firm return assets under their control. In some cases a system is mandated by government regulations, terms of lending, public grant terms, insurance terms etc. One person can maintain and manage all fixed assets of a business if they have software to assist them. Computer systems and software available reduce complexity, save time and prevent mistakes. Why use an asset management software program?

While paper and pencil methods can be used, software programs assist in the recording, maintenance and auditing of assets. This saves time and gives a clear picture of assets since sorting and viewing in different ways is quick and easy.

The most basic 'solution' would be using a spreadsheet program such as excel. Even after migrating to software specifically designed for asset management there are times that a spreadsheet program may continue to be useful.

What is an Asset?

What you call an asset often depends upon your business activities. The first thing that comes to mind is fixed assets such as computers, production equipment, office furnishings etc. You might even wish to consider employees as assets or even service and maintenance contracts. A flexible asset management software program can provide a way to track many things most of us would not consider to be assets.

What are my first steps in setting up a system or 'solution'?

1: Decide what assets will be managed.

The more assets the more work in setting up your system. Limiting assets to only those over a certain dollar value is a good idea.

2: Deciding what characteristics of assets it is important to record within the software.

Your choices will not only have an effect upon the amount of work required but also the amount to which you can manipulate and view asset information by sorting on asset information field or combination of fields.

For example if you setup a field for 'location' then you can sort data to see what assets are in each location. If you also have a field for 'type' or 'class' then you could further sort and display to show only certain types of assets such as computers at one or more location.

As in every aspect of life one has to make tough choices between what is ideal and what is feasible. Your choices will have an effect upon data data when new assets arrive as well as collecting information about existing assets. Choices you make will also have a bearing upon your choice of software since some may not handle everything you want. One such a limitation is found within the AssetTrakker Pro software program. TrackitSoftware does not provide a method of tracking depreciation because it was felt this added too much complexity requiring the collecting and maintaining of a lot more data. Additionally, they felt, handling depreciation requires superior knowledge of government rules and regulations beyond the expertise of the very people that stand to benefit most from asset management. Accounting departments already calculate and account for depreciation. * Some software does promote depreciation calculation but only limited functionality that in most cases is not the way regulations demand.

Some help!

Below is a listing of Asset Attributes 'fields' for your consideration. You will not want to use all of them for your own 'solution' and may well have additional ones you need.

Asset #: The key identification reference used to track assets. They can be straight numbers or a number with an alphabet prefix. (0001 or A001). This number is used for audit purposes and for cross-reference.

Make: Manufacturer

Model: Use when arranging service or buying parts. Use as allowed grouping by model type.

Serial #: Specific asset identification. Needed when making warranty or insurance claims.

Cost to Repl .: Estimate the cost of replacing an asset. Useful for planning, risk assessment and insurance.

Cross Ref. #: Reference other asset number or tie together group of assets.

Type: Can be used for general grouping such as furniture, computer, shipping, etc.

Condition: Helpful to see what is likely to require replacement or decide on service needs.

Description: Other detail in addition to make, model, and serial number.

Memo: Additional information about the asset. If a computer you might want to list details of the hardware configuration or even the programs installed on it.

Department: This is helpful for sorting assets by department to assist in auditing.

Location: Good field to have so that a search / sort can give you a clear view of where assets are located.

Used by: Necessary if you have assets in the personal possession of an employee and / or assets off business concessions.

Date Assigned: Useful if assets are moved around or for telling how long an asset has been at its current location.

Expected EOL: The anticipated date when the asset will no longer be useful.

Funded by: Source of funds if provided by Bond Issue, or outside funds (loan) or a grant.

Cost: Total cost of acquiring an asset.

Date Acquired: Helps give some idea when replacement may be required.

Disposed: Indicates an asset has been disposed of.

Disposed Date: Date asset was disposed of.

Business Use%: Used if an asset is not used full time by the business to break down asset use. Not for everyone, but a field that imagination might find an indispensable use for.

OUT: Used for Tool / Equipment Tracking,

Taken By / In From: Used for Tool / Equipment Tracking to indicate who is taking or returning item.

Date Due: Used for Tool / Equipment Tracking to show when an asset is due back.

Recovered Value: Net proceeds of the disposal of an asset.

Disposed Detail: Notes on how and where an asset was treated of.

Warranty: Indicates if asset is covered by a warranty or could be used if covered by a service / maintenance contract.

Warranty Expiry: It is useful to see what expiries are approaching for tracking maintenance or service agreements. Helps prevent paying for service covered by warranty as well as prompting the repair of items before expiration.

Image: Can assist in asset identification or where 'look' is an important feature. Useful if insurance claim ever made.

Value: Could be amount the asset is insured for. Risk exposure control.

Leased: Helps keep track of Leased vs Owned assets.

Lease End: Used to warn when assets have to be replaced or the lease has to be renewed according to the terms of the lease.

Lease Start: Commencement date of lease on leased equipment.

Lease Co: The name of the company from which an asset is leased.

Audit Date: This column records the date the batch scans of assets were made for audit purposes.

Auditor: Record the name of the person who performed the audit.

What next?

By now you have a good idea of ​​what asset information you want to track. Before looking at the various software packages available you should consider how many people will be entering data and how many will be accessing the data. For a smaller organization it is likely that just one person will be involved but in larger firms despite a number will wish to participate. Your situation could require purchasing more than one software license and the software must support multiple users.

Use a Barcode Scanner?

A barcode scanner can be used to speed data entry and auditing. This will add to the cost and most lower priced software packages offer limited support for barcode scanners. If properly incorporated into software a scanner can provide excellent value and save a lot of time, particularly for annual audit purposes.

Below are outlined the types of barcode scanners used with asset management software.

A 'dumb' tethered ccd scanner is cheapest and purchased for around $ 70. This can only be used when plugged into the computer and acts just to a keyboard in that you scan a barcode and it is put into whatever cell or space you are in.

A 'laser' tethered scanner is more money but will be able to scan smaller barcodes and sometimes have a defect field of view (easier to scan a barcode quickly).

A ccd or laser scanner which has built in memory so scans can be made and then the scanner can be brought back and plugged into a computer, and those scans uploaded. This is extremely useful for audit purposes. For maximum utility your software should be optimized to take advantage of this 'batch' memory capability. A capable unit can be obtained for around $ 150.

A laser scanner with internal memory, as well as an input screen and keys, means that after scanning a barcode you can add additional information. These are more expensive and again their use has to be integrated into your management software. While prices are coming down you are looking at units in the pocket pc price range plus scanner cost. It is usual for software utilizing these units to also, for some reason, be priced higher.

Asset Management Software

The range of prices for asset management software is $ 200 to $ 10,000 and all require you to do the entry of existing asset data as well as some setting up for your requirements. Some offer telephone advice at additional cost but hands on assistance only comes with expensive packages (this level of software requires expensive sales force and marketing expense so possibly their price, for the features provided, may seem high).

Purchasing Criteria a lot of people seem to use. You may have more.

1: Price 2: Ease of implementation of system 3: Ease of use 4: Ability to fit the business 5: Functionality 6: Potential to handle growth

What you can obtain for a reasonable price

A program with full relational database, such as MS SQL Server Express, or open source database. Today there is no reason to set for less power or quality. Microsoft provides their SQL 2005 'Express' DB version at no cost.

A program that allows you to attach images of assets. While not necessary for everyone it is something that someday you might want to use.

A program that integrates the use of inexpensive 'batch' memory barcode scanners because, if not now, at some point in the future such an accessory will save time and money. Used in auditing it assures an asset was actually seen as barcode had to be scanned.

A program that will permit the management of 10,000+ assets. With decent memory in your computer and a fast full relational database engine there is not much of a limitation anymore and while certain functions may slow down a bit even a low cost program should handle over 10,000 assets.

A program that is flexible so you can take advantage of features later instead of having to implement everything at once.

* If more than one person is to be given access to the database then you should ensure that different levels of access can be set for different users to prevent unauthorized changes to data.

What you can get but not cheaply.

A program that integrates directly into your current accounting system.

A program that has full professional depreciation calculations.

A program that runs directly off your company server (lower cost software runs off workstations and while a central database can be located on your server and accessed by individual workstations this is not the same as complete software being server based with applets on workstations.

Hand holding and in house training to get your system up and running. There are firms that will sit down with you and ask you all the right questions, set up your software, audit and list all your assets and then train your staff how to operate and maintain your 'solution'. Most, to my knowledge, will recommend a mid to high priced software because it is easier to sell (commission higher as well) and easier for them to install due to their familiarity with it.

Nuts and Bolts

Gathering your Asset Information How you perform this step depends upon your situation. In our discussion below we assume you do not have existing asset information, in an existing excel spreadsheet or other format. If you do then you would save work by exporting / importing that data into your asset management software.

Starting your Asset Listing and Numbering from Scratch

This is an advantage because you are not limited by inherited constraints. Of course it is more work, as you can not just load in existing asset information but have to collect everything yourself.

Collecting asset information is time consuming. Getting this information accurately, with as little work as possible is important. Thinking about how to do the job and planning will help make this big job easier.

The following is how I suggest doing this but you may have your own, sometimes better plan.

Create data entry sheets that you will have people write in information about assets under their control. Your asset management software may create these or you could make up an excel spreadsheet to obtain them.

Try and obtain some 'buy in' from the department or location manager with control over assets. The closer to the asset you can allocate some responsibility the better that asset will be controlled. 'It's my department's asset' is more powerful an incentive than 'it's IT Dept's asset'.

Final steps

After entering data, that your co-operative managers helped you obtain, it is time to work with that data within your asset management software. It should not take long to become familiar with how it can present information to you on screen and in reports.

Now sit back and enjoy how easy it is to manage your assets.

Posted in general | Comments Off on Introduction to Fixed Asset Management

History and Components of a Modern Mainframe Computer

Mainframe computers are critical for some of the largest corporations in the world. Each mainframe has more than one modern processor, RAM ranging from a few megabytes to multiple-score gigabytes, and disk space and other storage beyond anything on a microcomputer. A mainframe can control multiple tasks and serve thousands of users every second without downtime.

The chief difference between mainframes and other computing systems is the level of processing that takes place. Mainframes are also different in terms of data bandwidth, organization, reliability, and control. Big organizations-banking, healthcare, insurance, and telecom companies, etc.-use mainframes for processing critical commercial data.

In this article, we discuss the evolution of mainframe computers and their components.

History of mainframe computers

IBM developed a critical part of mainframe computing, the Automatic Sequenced Controlled Calculator (ASCC) for arithmetic operations, in 1944. From the late 1950s through the 1970s, several companies manufactured mainframes: IBM, Burroughs, RCA, NCR, General Electric, and Sperry Rand, for example. Since then, System / 390 by IBM is the only kind of mainframe in use. It evolved from IBM's System / 360 in 1960.

An Early mainframe occupied a huge space. New technologies have drastically reduced the size and cost of the hardware. A current-generation mainframe can fit in a small closet.

Components of a modern mainframe computer

Like a PC, a mainframe has many components for processing data: operating system, motherboard or main board, processor, controllers, storage devices, and channels.

• Motherboard: The motherboard of a mainframe computer consists of a printed circuit that allows CPU, RAM, and other hardware components to function together through a concept called "Bus architecture". The motherboard has device slots for input cards and cable interfaces for various external devices. Where PC motherboards use 32- or 64-bit buses, mainframes use 128-bit buses. General instructions regarding the internal architecture help the motherboard connect to the other devices and retrieve data using binary computation.

• Processor: A CPU acts as the central processing point in mainframe architecture and includes an Arithmetic Logic Unit (ALU) for performing arithmetic calculations. It also works as a controller for the bus architecture and handles traffic and data requests. The processing power of mainframes is much higher compared to PCs, so that they can handle huge amounts of data.

• Storage devices: Storage devices are for entering, retrieving, storing, and recording data. Many are external devices, such as hard drives, tape drives, and punch card readers, all connected to terminals of the mainframe and controlled by the CPU. Their capacity for data storage can be hundred or even thousands of times that of a PC.

• Communication controllers: Communication controllers allow remote computers to access a mainframe. With the help of networks, LAN or WAN, communication controllers establish connections with various devices, perform data transmission over communication channels, and keep track of users at terminals.

• Channels: The "channels" are the cables used to connect the CPU and the main storage to other parts of the system and make sure that data is moved in a systematic way without losing its integrity.

Modern mainframes have advanced features such as expanded service management capabilities, cross-platform integration facilities, etc. And so are suitable for critical data center operations. The cost of maintaining modern mainframes is much less compared to older models.

Posted in general | Comments Off on History and Components of a Modern Mainframe Computer

How Are Brains Different From Computers?

Ever wondered how brains are different from computers? This article shows how. Read on to find out.

Brains consist of cells called neurons and they connect with millions of other neurons and information gets transferred across connection gaps called synapses. Inside the cells data are processed which gives rise to an idea, concept or understanding.

Computers are built of hardware chips and the central processing unit (CPU) processes data after receiving them from the other chips. How it processes data conss of several steps but the main outline is that software programs are fed into the CPU and processed. They provide end result information depending on how the programs are furnished with data and what the query is that fed into the system. If some information is asked that is outside the scope of the software programs, the computer gets limited in functioning.

Brains, however, are limitless. From childhood until adulthood, the brain gets more and more developed and mature. It can process unknown data or abstract data as well and provide insights and knowledge.

The brain is more complex than the CPU and therefore, with neurons and synaptic connections, it is possible to process all kinds of information. It uses the five senses: touch, smell, hearing, taste and sight and takes in information and produces knowledge.

On the other hand, the CPU of computers takes in data from the typing of the keyboard and processes it, which is very limited. However, it is only human beings feeding data, writing software programs and making the computer like like a brain although not quite so.

The brain is still more intelligent than the CPU of computers and has yet to train the computer to have like the brain of a human being.

Yes, computers will be able to take over many tasks of human beings but without human beings, they are lifeless because humans have to give life to these computers, operate on them and have regular updating, monitoring and maintenance on them.

Just as a brain needs to rest and relax, computers will also need that from time to time but they can operate longer times than the average brain. While the brain sleeps, the computer can carry on with its duties of processing data and converting them to knowledge and information.

Summing up, although the CPU is sometimes called the brain of the computer, it is actually a misnomer because as I have outlined in this article, the brain is definitely different from the computer in varying ways and the brain has yet to teach the computer to Behave 100% like a brain.

Posted in general | Comments Off on How Are Brains Different From Computers?

How to Repair “Runtime Error 481”

The runtime error is one of the most common Windows problems that keep popping up and keeping your system from running smoothly and perfectly, even a small or a single error in the process will leave your system in a knot. This makes it even more important for any user to know how to fix runtime error 481. In order to fix or diagnose the problem correctly everyone should first know what the actual purpose of the runtime processes. It is an integral and essential part of the Windows system details to manage the handling of many services as well as many different software as running on the Windows platform. Since, the file actually handles a lot of information and settings at a time it is very prone to attack by many different viruses, malware and even spyware.

The problems – there can be many different symptoms to the errors related to the runtime process. The symptoms can range from a simple delayed operation of the software to much more complicated system freezes and error messages. This sort of problems may arise from many different factors starting from corruption of the system file due to a virus infection or any other malicious software to defective and invalid system registry entries.

Though the problems are varied but still the answer to the question remains pretty simple.

The solutions – the solution to the runtime error 481 can be many forms, as the problem itself may arise from many different sources. Though it is widely accepted that the most common reason for such errors is a corrupted registry entries but still many tools and software is required to be used in order to properly remove the problem.

  • If the error actually results after installing a new software always make sure to uninstall and reinstall the software to check whether the error was caused by it.
  • Is the process file is corrupted beyond repair it is always safe to replace the file with an original one from any windows XP CD using the system file Checker tool. This can also be achieved from the recovery console is the system has completely crashed due to the error and cannot be started in a normal way.
  • As the most common problems that can give out runtime related errors is widely identified as defective registry entries, it is best recommended that you always check your system with a proper registry cleaner before taking any drastic step.

Even if all of the above methods fail, you always have the option of reinstalling your operating system in order to solve the runtime error 481. Though this may seem the simplest one but the safest and wisest one would be to use a registry cleaner regularly and keep your system clean and healthy.

Posted in general | Comments Off on How to Repair “Runtime Error 481”

Texas Two Step Strategy – Everything You Need to Know

The Texas Two Step lottery is a great example of a game that is both strategic and fun. The state lottery is an excellent arena for you to shell out your extra dollars while learning about alternative lotto mechanics. In the state of Texas, the Texas Two Step is considered to be the most popular form of lottery. The game beings when an individual is asked to pick four number from and in between 1 to 35. Like most lotto types, this also has a bonus ball number, which can increase your chances of winning. The grand price for this unique game does not go below two hundred thousand dollars so long as you make five matches. If you are also quite hesitant to pick your own number, the quick pick system also applies to the Texas Two Step lottery. A multi-draw feature also allows you to bet for ten advance drawings at once by simply making a distinguishable mark in the designated ticket boxes. Single plays cost only US$1 each and can reflect winnings up to a hundred thousand dollars.

Most lottery systems base on luck as foundation for winning. Unfortunately, even with the convenience of quick picks and other strategies, chances of winning are still small. One effective way to increase the chances of gaining back positive results from your chosen number is by adhering to the Wheeling Systems. Generally, wheeling systems do not guarantee an automatic win after placing your number picks in the Texas Two Step. However, the mechanism gives you more chances of bringing home multiple tier prizes as opposed to you simply randomly selecting the number, or relying on quick picks. The odds of winning the Texas Two Step prize are statistically ranging from 1 to 32. The overall ratio of victory can be quite unsatisfactory if played with mere dependence on luck. Although you can win $5 for simply matching the bonus ball number, naturally, anyone would still want to vie for the grand prize.

There are also a handful of lotto software that provide good combination numbers for players. Most people confirm the effectiveness of most online programs in tracking the best numeral combinations for lottery. You may program these to suit your needs and according to the type of lottery that you participate in. For Texas Two Step, it is much easier to use a software to calculate possible combinations as it has lesser selections or numbers compared to most lotto games.

For serious lotto players, individuals simply log onto the website and place their bets randomly. Sites also offer a few tips and strategies on how to best employ their gaming techniques. You may be able to view advices on when is the best time to place your bets and how to purchase your tickets quickly. Other websites also present lottery news, which is also an effective way to keep track of your bets. Bear in mind that in order for a player to achieve positive results while playing lotto, the correct strategy and technique must put in place so as to lead you to triumph and victory.

Posted in general | Comments Off on Texas Two Step Strategy – Everything You Need to Know

Double Towel Racks – The Easy Way To Increase Space

Bathrooms almost always pose a storage challenge. They often have minimal space to do all the jobs we need to do in there and to store everything we use while we're in there.

When a bathroom is shared by a couple of people, or even an entire family, unique storage challenges come up, and they require unique solutions. When, say, four people use the same room for bathing, an obvious problem is: where do you put all the towels? Bathroom hardware manufacturers came up with a better solution: double towel racks.

A traditional single towel rack provides sufficient space to dry one towel. If you've got four people using four towels each day, and you have a typical bathroom, you'll need a wall covered with towel rods to provide enough drying space.

Double towel racks provide an innovation solution to this all-too-common bathroom storage problem. You'll find double towel racks come in traditional finishes like polished chrome and polished and antique brass, and popular finishes like brushed nickel and oil-rubbed bronze. You can find economic versions of double towel racks in unfinished wood and ceramic-and-plastic. Regardless of the amount the wall space you have available to install this hardware, you'll find one to fit your space; They come in the range of standard sizes.

If your bathroom is short on storage, you'll usually be open to considering any new space-saving solutions. You can find bathroom suites with a double towel racks installed below. Imagine-in the space where you could normally dry a towel or two, you can double your hanging space, and have room to store a few fresh folded towels and other bathroom essentials, too.

Double towel racks are an excellent solution when you've got lots of damp towels to handle, but other solutions do exist:

• Install a row of pegs or hooks along the wall of the bathroom.
• Install one or more multi-prong hooks on the back of the bathroom door.
• Buy a shower curtain rod with a towel rack incorporated in its design.
• When you purchase shower doors, look for ones where the handles double as towel bars.
• Install suction-cup hooks inside the tub surround.
• Place a swing-arm towel bar to the wall next to your tub or shower. This way, the towel bars extend into the room; They are not limited to hanging against a wall.
• Hang a hook over the bathroom door, linen closet door, or the door of the water closet. These over-door hooks come in single, double, and multiple hook versions in colors and finishes that either stand out or blend in.
• Repurpose an old-style coat rack and use it to hang towels in the bathroom. It takes up only a single square foot of precious floor space.
• If you want to add furniture to your bathroom, look for a hall tree, which is usually reserved for use in the foyer or a mudroom. They come in many styles and finishes, equipped with hooks, mirrors, storage benches, and shelves.
• If you've fortified enough to have a sizable linen closet in your bathroom, visit the closet organization section of your home improvement store. These stores have trained personnel who can help you look at the space you have and redesign it to suit your needs.

Installing a couple of double towel racks can provide a simple way to add storage space to your bathroom. But investigate all the possible storage options for your unique bathroom design challenges. You're not limited to one solution-think creatively and combine them to make a bathroom that works for you.

Posted in general | Comments Off on Double Towel Racks – The Easy Way To Increase Space